↳ Prolog
↳ PrologToPiTRSProof
ordered_in(.(X, .(Y, Xs))) → U1(X, Y, Xs, le_in(X, Y))
le_in(0, 0) → le_out(0, 0)
le_in(0, s(0)) → le_out(0, s(0))
le_in(s(X), s(Y)) → U3(X, Y, le_in(X, Y))
U3(X, Y, le_out(X, Y)) → le_out(s(X), s(Y))
U1(X, Y, Xs, le_out(X, Y)) → U2(X, Y, Xs, ordered_in(.(Y, Xs)))
ordered_in(.(X, [])) → ordered_out(.(X, []))
ordered_in([]) → ordered_out([])
U2(X, Y, Xs, ordered_out(.(Y, Xs))) → ordered_out(.(X, .(Y, Xs)))
Infinitary Constructor Rewriting Termination of PiTRS implies Termination of Prolog
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
ordered_in(.(X, .(Y, Xs))) → U1(X, Y, Xs, le_in(X, Y))
le_in(0, 0) → le_out(0, 0)
le_in(0, s(0)) → le_out(0, s(0))
le_in(s(X), s(Y)) → U3(X, Y, le_in(X, Y))
U3(X, Y, le_out(X, Y)) → le_out(s(X), s(Y))
U1(X, Y, Xs, le_out(X, Y)) → U2(X, Y, Xs, ordered_in(.(Y, Xs)))
ordered_in(.(X, [])) → ordered_out(.(X, []))
ordered_in([]) → ordered_out([])
U2(X, Y, Xs, ordered_out(.(Y, Xs))) → ordered_out(.(X, .(Y, Xs)))
ORDERED_IN(.(X, .(Y, Xs))) → U11(X, Y, Xs, le_in(X, Y))
ORDERED_IN(.(X, .(Y, Xs))) → LE_IN(X, Y)
LE_IN(s(X), s(Y)) → U31(X, Y, le_in(X, Y))
LE_IN(s(X), s(Y)) → LE_IN(X, Y)
U11(X, Y, Xs, le_out(X, Y)) → U21(X, Y, Xs, ordered_in(.(Y, Xs)))
U11(X, Y, Xs, le_out(X, Y)) → ORDERED_IN(.(Y, Xs))
ordered_in(.(X, .(Y, Xs))) → U1(X, Y, Xs, le_in(X, Y))
le_in(0, 0) → le_out(0, 0)
le_in(0, s(0)) → le_out(0, s(0))
le_in(s(X), s(Y)) → U3(X, Y, le_in(X, Y))
U3(X, Y, le_out(X, Y)) → le_out(s(X), s(Y))
U1(X, Y, Xs, le_out(X, Y)) → U2(X, Y, Xs, ordered_in(.(Y, Xs)))
ordered_in(.(X, [])) → ordered_out(.(X, []))
ordered_in([]) → ordered_out([])
U2(X, Y, Xs, ordered_out(.(Y, Xs))) → ordered_out(.(X, .(Y, Xs)))
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
ORDERED_IN(.(X, .(Y, Xs))) → U11(X, Y, Xs, le_in(X, Y))
ORDERED_IN(.(X, .(Y, Xs))) → LE_IN(X, Y)
LE_IN(s(X), s(Y)) → U31(X, Y, le_in(X, Y))
LE_IN(s(X), s(Y)) → LE_IN(X, Y)
U11(X, Y, Xs, le_out(X, Y)) → U21(X, Y, Xs, ordered_in(.(Y, Xs)))
U11(X, Y, Xs, le_out(X, Y)) → ORDERED_IN(.(Y, Xs))
ordered_in(.(X, .(Y, Xs))) → U1(X, Y, Xs, le_in(X, Y))
le_in(0, 0) → le_out(0, 0)
le_in(0, s(0)) → le_out(0, s(0))
le_in(s(X), s(Y)) → U3(X, Y, le_in(X, Y))
U3(X, Y, le_out(X, Y)) → le_out(s(X), s(Y))
U1(X, Y, Xs, le_out(X, Y)) → U2(X, Y, Xs, ordered_in(.(Y, Xs)))
ordered_in(.(X, [])) → ordered_out(.(X, []))
ordered_in([]) → ordered_out([])
U2(X, Y, Xs, ordered_out(.(Y, Xs))) → ordered_out(.(X, .(Y, Xs)))
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ UsableRulesProof
↳ PiDP
LE_IN(s(X), s(Y)) → LE_IN(X, Y)
ordered_in(.(X, .(Y, Xs))) → U1(X, Y, Xs, le_in(X, Y))
le_in(0, 0) → le_out(0, 0)
le_in(0, s(0)) → le_out(0, s(0))
le_in(s(X), s(Y)) → U3(X, Y, le_in(X, Y))
U3(X, Y, le_out(X, Y)) → le_out(s(X), s(Y))
U1(X, Y, Xs, le_out(X, Y)) → U2(X, Y, Xs, ordered_in(.(Y, Xs)))
ordered_in(.(X, [])) → ordered_out(.(X, []))
ordered_in([]) → ordered_out([])
U2(X, Y, Xs, ordered_out(.(Y, Xs))) → ordered_out(.(X, .(Y, Xs)))
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ PiDP
LE_IN(s(X), s(Y)) → LE_IN(X, Y)
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ QDPSizeChangeProof
↳ PiDP
LE_IN(s(X), s(Y)) → LE_IN(X, Y)
From the DPs we obtained the following set of size-change graphs:
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ UsableRulesProof
U11(X, Y, Xs, le_out(X, Y)) → ORDERED_IN(.(Y, Xs))
ORDERED_IN(.(X, .(Y, Xs))) → U11(X, Y, Xs, le_in(X, Y))
ordered_in(.(X, .(Y, Xs))) → U1(X, Y, Xs, le_in(X, Y))
le_in(0, 0) → le_out(0, 0)
le_in(0, s(0)) → le_out(0, s(0))
le_in(s(X), s(Y)) → U3(X, Y, le_in(X, Y))
U3(X, Y, le_out(X, Y)) → le_out(s(X), s(Y))
U1(X, Y, Xs, le_out(X, Y)) → U2(X, Y, Xs, ordered_in(.(Y, Xs)))
ordered_in(.(X, [])) → ordered_out(.(X, []))
ordered_in([]) → ordered_out([])
U2(X, Y, Xs, ordered_out(.(Y, Xs))) → ordered_out(.(X, .(Y, Xs)))
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
U11(X, Y, Xs, le_out(X, Y)) → ORDERED_IN(.(Y, Xs))
ORDERED_IN(.(X, .(Y, Xs))) → U11(X, Y, Xs, le_in(X, Y))
le_in(0, 0) → le_out(0, 0)
le_in(0, s(0)) → le_out(0, s(0))
le_in(s(X), s(Y)) → U3(X, Y, le_in(X, Y))
U3(X, Y, le_out(X, Y)) → le_out(s(X), s(Y))
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ UsableRulesReductionPairsProof
U11(Y, Xs, le_out) → ORDERED_IN(.(Y, Xs))
ORDERED_IN(.(X, .(Y, Xs))) → U11(Y, Xs, le_in(X, Y))
le_in(0, 0) → le_out
le_in(0, s(0)) → le_out
le_in(s(X), s(Y)) → U3(le_in(X, Y))
U3(le_out) → le_out
le_in(x0, x1)
U3(x0)
Used ordering: POLO with Polynomial interpretation [25]:
le_in(0, 0) → le_out
le_in(0, s(0)) → le_out
le_in(s(X), s(Y)) → U3(le_in(X, Y))
POL(.(x1, x2)) = 1 + 2·x1 + 2·x2
POL(0) = 0
POL(ORDERED_IN(x1)) = x1
POL(U11(x1, x2, x3)) = 1 + 2·x1 + 2·x2 + 2·x3
POL(U3(x1)) = x1
POL(le_in(x1, x2)) = 1 + x1 + x2
POL(le_out) = 0
POL(s(x1)) = 2·x1
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ UsableRulesReductionPairsProof
↳ QDP
↳ DependencyGraphProof
U11(Y, Xs, le_out) → ORDERED_IN(.(Y, Xs))
ORDERED_IN(.(X, .(Y, Xs))) → U11(Y, Xs, le_in(X, Y))
U3(le_out) → le_out
le_in(x0, x1)
U3(x0)